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This note describes a simple scenario where defining an instrumental
variable is helpful for computing calibration weights (i.e., weights that satisfy
the specified calibration equation yet are asymptotically identical to the
inverse selection probabilities).  The implicit model is simple regression with
an intercept.   The choice of instrumental variable can reduce the possibility
that any calibration weight will be less than unity.
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I.   Introduction

Recently, Estavao and Särndal (2000) introduced a “functional form” calibration

estimator for T = 3U yk, where U is a population of N elements, with the following form:

                                                        tCALF =  3  wkyk,                                                        (1)
                                                                  k0S

where S in the sample, 

                                        wk = ak + (3  xi ! 3 aixi)( 3  qizi!xi)
-1qkzk!,                                 (2)

                                                        i0U      i0S       i0S

ak = 1/Bk $ 1 is the original sampling weight for element k, xk is a row vector of J

auxiliary variables associated with k, qk is an arbitrary constant, and zk is a row vector of

J instrumental variables, some of which may also be components of xk.   This assumes

that 3S qizi!xi is invertible.   The wk are called “calibration weights” in part because they

satisfy the calibration equation, 3U xk = 3S wkxk.

It is easy to show that tCALF is an unbiased estimator for T under the model 

yk = xk$ + ,k, where E(,k*xk) = 0.  Moreover, tCALF is randomization consistent under mild

conditions, which we assume here to hold.   Finally, under those same conditions and

some equally mild restrictions on the variance structure of the ,k, the anticipated

variance (model expected randomization mean squared error) of tCALF is asymptotically

invariant to the choice of qk and zk. 

This estimator is an interesting, if not new, generalization of the standard GREG

made popular by Särndal et al. (1992).   An earlier version of tCALF can be found in

Brewer et al. (1988), although not in calibration form.   In practice, it is not obvious  why

one would contemplate using a vector for zk other than xk itself, the usual GREG

formulation.    As for qk, it is frequently set equal to ak.  Brewer (1994), however, has

argued that setting qk = ak !1, the remainder weight,  more often returns a set of

calibration weights where wk $ 1 for all elements in the sample.   Many find this a
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desirable property since then each sample element can be thought of as at least

representing itself.    

In this note, we will consider the scenario where xk = (1, xk), and the xk vary

within the population and the sample (so matrices are invertible when need be).  Using

remainder weights for the qk helps assure that all wk $ 1 (for those k in the sample). 

The addition of a well chosen zk, introduced in Section 2, makes that property even

more likely.   Section 3 discusses the more modest goal of finding a complete set of

positive calibration weights.   Section 4 contains a modest empirical investigation.  The

discussion in Section 5 concludes that a particular choice of the zk will produce a set of

calibration weights with all wk $ 1 if any such set exists.  

2.  The Instrument and its Calibration Weights

Let zk = (1, zk), where zk = 1 when xk $ A, and zk = !1 otherwise.  A can be anywhere

within the range of the xk.  As suggested in the introduction, we also let qk  = ak !1, the

remainder weight.

Let S1 be that part of the sample for which zk = 1,  and S2 be the complement of

S1 within the sample.  Let m be the remainder-weighted mean of the xk in S, m1 be the

remainder-weighted mean of the xk in S1, and m2 be the remainder-weighted mean of

the xk in S2.  Let  R̂1 be the sum of the remainder weights in S1,R R̂2 be the sum of the

remainder weights in S2, and  R̂ =  R̂1 + R̂2.  Finally, let MR be the mean value of all xk in 

R = U ! S; that is, those elements in the universe but not in the sample.  We will let R

also stand for the size of R.  Not surprisingly, it is estimated by  R̂.   Under many

designs, the two are identical. 

Inspecting equation (2) one can see that the calibration weights are invariant to

transformations of zk or xk (e.g., zk can be replaced by zkH where H is any nonsingular

J xJ matrix without it affecting the result).  Consequently, we can replace each xk in xk

by xk ! m.  In the matrix zk, we can replace the 1 by 1/R̂, each zk in S1 by 1/ R̂1, and 
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each zk in S2 by  !1/ R̂2.  As a result of these substitutions, the 2 x 2 matrix 3S qizi!xi

becomes diagonal.  Its upper left hand corner contains a 1, and its lower right the value

m1 ! m2. 

A little manipulation reveals

wk = ak + (N ! 3 ai)(ak !1)/ R̂   + (m1 ! m2)
-1 [  3   (xi !m) ! 3 ai(xi !m)](ak !1)ck,       (3)

                      i0S                                            i0U               i0S   

where ck = 1/ R̂1 when k 0S1, and ck = !1/ R̂2 otherwise.   Observe that for sample

designs where  3S ai = N, equation (3) has a much simpler form: 

wk = ak + (m1 ! m2)
-1 [  3  xi  ! 3 aixi](ak !1)ck,

                                   i0U      i0S   

Continuing from equation (3),  

wk  = ak + (R ! 3 [ai !1])(ak !1)/ R̂  + (m1 ! m2)
-1 [  3 (xi !m) ! 3 (ai !1)(xi !m)](ak !1)ck    

                       i0S                                                   i0R             i0S   

     = 1 + (ak !1) + (R !  R̂)(ak !1)/ R̂  +  (m1 ! m2)
-1 R(MR !m)ck 

     = 1 + (ak !1){(R/ R̂)  +  (m1 ! m2)
-1 R(MR !m)ck}.

     = 1 + (ak !1)R (m1 ! m2)
-1 {(m1 ! m2)/R̂  + (MR !m)ck}

    =   1 + (ak !1)(R/R̂1)(m1 ! m2)
-1 (MR ! m2)      when k 0 S1                                      (4.1)

    =   1 + (ak !1)(R/ R̂2)(m1 ! m2)
-1 (m1 ! MR)      when k 0 S2.                                     (4.2)

This last step uses the equality  R̂1m1 + R̂2m2 =  R̂m.

It is easy to see that wk is equations (4.1) and (4.2) will be 1 or greater as long as

m2 # MR # m1.  Now, m1 is a randomization consistent estimator of the mean of the xk

values in R that are greater than or equal to A, while m2 is a randomization consistent
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estimator of the mean of the xk values in R that are less then A. 

In principle, A can be anywhere within the range of the xk in U.  In practice, it

makes sense to put it somewhere in the “center” of the distribution.  Although the

population median seems a reasonable choice, the population mean proved more

effective in the modest empirical example to be discussed in Section 4.  In Section 5,

we see that setting A = MR will find calibration weights with all wk $ 1 if such a set exists. 

Whatever the choice of A, it needs to be made before one looks at the sample. 

Otherwise, tCALF might not really be randomization consistent. 

3.  Sample Weights Versus Remainder Weights

One can think of the conventional ratio estimator as having the same form of tCALF in

equation (1) with xk = xk, zk = 1, and qk = ak, the original sample weight of element k. 

Brewer (1979) proposed a variant with qk = ak !1, what we have called the “remainder

weight” because 3S (ak !1)yk  estimates 3R yk.  Each of  the calibration weights under the

conventional ratio formulation must be positive as long as all xi $0 and one sample

element has a positive x-value, since wk =  [3U xi /3S aixi]ak.  Brewer’s approach assures

more.  No calibration weight will be less than 1, since wk = 1 + {3R xi /3S [ai !1]xi}[ak !1],

and ak $1.  Note that [ai !1]xi must be positive for at least one sample element for

Brewer’s wk to be defined.  That is to say, at least one noncertainty sample element

must have a positive x-value.  

A similar thing happens in our scenario.  Defining zk as in the previous section 

but letting qk = ak, the interested reader can derive these calibration-weight formulae:

  

wk  =   ak (N/N̂1*)(m1* ! m2*)
-1 (M ! m2*)      when k 0 S1                                             (5.1)

 

      =   ak (N/N̂2*)(m1* ! m2*)
-1 (m1* ! M)      when k 0 S2,                                            (5.2)

where N̂1 (N̂2) is the sum of the wk in S1 (S2), m1* (m2*) is the sample-weighted mean of

the xk in S1 (S2), and M is the mean of the xk in U.  Under this regime, all the calibration
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weights are positive when  m1* < M < m2*.  This is no guarantee, however, that each

weight is at least 1.

4. A Modest Empirical Investigation

In this section, we investigate self-weighted samples of size 16 drawn from a very large

population, U.  The population is so large that the differences between equations (4)

and (5) (virtually) vanish.   The x-values are generated by a chi-squared distribution with

1 degree of freedom.  The population mean of the xk in U is assumed to be 1, the mean

of the chi-squared distribution.  Likewise, its median is assumed to be 0.455. 

Although we are rarely interesting in samples of size 16 in practice, this example

has instructive value.  Moreover, it is not that uncommon to use a separate regression

estimator where there are a few of 16 elements per stratum. 

Table 1 displays the results of a simulation comparing calibration weights

computed using equation (5) with conventional simple regression weights: 

wk’ = ak[1 + 16(1 ! m*) (xk ! m*) / 3 (xi ! m*)2],                                                              (6)
                                                     i0S

where m* is the sample-weighted mean of the xi.   In the first 1000 simulations, A is set

equal to the population mean, 1.  It is not possible to compute equation (5) in five

simulations, because all sample x-values are less than 1.  Consequently, S1 is empty,

and m1* does not exist.  In the other 995 simulations, the calibration weights are all

positive.  By contrast, equation (6) produces a nonpositive weight in 6.7% of the

simulations.   (We are focusing on nonpositive weights here because N is assumed to

be so large that virtually any positive weight will be greater than 1.)

Note that is conceivable for the largest x-value in a sample to be exactly 1,

rendering equation (5) computable and a calibration weight equal to zero.  That did not

happen in any of the 1,000 simulation.  

In the next set of simulations, equation (5) is calculated using the population

median as A.  The calibration weights can always be calculated in each of the1000
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simulations, but some weights are nonpositive in 3.6% of them.  Although this is better

than using the simple regression weights, it is not as good as setting A equal to the 

population mean had been.

Table 1 also displays results from simulations using the sample mean and then

the sample median as A.   Using the sample median produces nonpositive weights in

more simulations than the conventional regression method.   Using the sample mean is

much better, but not as good as using the population mean.    

According to Table 1, setting A equal to the population mean (A = 1) is clearly

the best thing to do.   Increasing the sample size to 25 has little qualitative effect on the

results, except that complete sets of positive calibration weights become more

common.  On the one hand, using equation (5) with A = 1 produces a positive

calibration weight for every sample element in all 1,000 simulation (not displayed).  On

the other, equation (6) with 25 replacing 16 returns at least one nonpositive calibration

weight in only 2.3% of the simulations.   A small fraction, but not zero. 

5. Discussion

The population mean works well as A in our modest simulations because equation (5)

will always return nonnegative weights as long as there is a single sample element with

an x-value greater than or equal to the population mean and a single same element

with an x-value below the population mean.  

When N is not nearly infinity, equation (4) can be different from equation (5). 

The former was constructed to assure that no calibration weight would be less than 1. 

If we set A = MR (the mean x-value among population elements not is the sample), then

that will always be the case as long as there is a single sample element with an x-value

greater than or equal to MR and single sample element with an x-value below MR.   This

is why equation (4) with A = MR is usually preferable to equation (5) with A = M. 

Nevertheless, under certain unusual conditions, it is possible that equation (5) will

return all positive weights, while equation (4) will not be computable.  This can happen

when there is no sample element with an  x-value greater than or equal to MR but there
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is one with an x-value greater than  M < MR. 

Suppose xk # xsmax < MR for all elements k in the sample, so that equation (4) with

A = MR is not computable.  It is easy to see that no set of calibration weights satisfying

wk $ 1 exists.   Suppose one did.  Then 3S (wk !1) = R, and 3S (wk !1)xk = 3R xk = RMR. 

But  3S (wk !1)xk / 3S (wk !1) # 3S (wk !1)xsmax / 3S (wk !1) = xsmax < MR.  A contradiction. 

An analogous argument applies when xk $ xsmin > MR for all elements in the sample. 

Consequently, the only time equation (4) with A = MR will fail to produce a set of

calibration weights that are all at least 1 is when no such set exists.   Similarly, it is not

hard to show that the only time equation (5) with A = M will fail to produce a set of

nonnegative calibration weights is when no such set exists.  
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Table 1.    Fractions of 1,000 Simulations With at Least One Nonpositive Weight
_____________________________________________________________________

A (for equation (5))                         Using Equation (5)                      Using Equation (6)a

_____________________________________________________________________

Population Mean 0.005b 0.067
Population Median 0.036 0.065
Sample Mean 0.025 0.060
Sample Median 0.087 0.055

a   These values vary because they are based on different simulations
b   Calibration weights could not be calculated at all in five simulations. 


